“THERE is no treatment.” This is the conclusion of an Egyptian papyrus, written around 3000BC, that is the oldest known description of the scourge that is now called “cancer”. And so, more or less, it remained until the 20th century, for merely excising a tumour by surgery rarely eliminates it. Only when doctors worked out how to back up the surgeon’s knife with drugs and radiation did cancer begin to succumb to treatment—albeit, to start with, in a pretty crude fashion.

Now, however, that crudeness is rapidly giving way to sophistication, as a new wave of cancer treatments comes to market. In 2012 more than 500 potential cancer drugs were under investigation, according to a survey by IMS Health, an American research group—over five times as many as were being developed in the next biggest category, diabetes. […]

[…] Cancer cells divide a lot, so mutations can accumulate rapidly. And sometimes, to add to the problem, one of the enabling mutations of a cancer is of a gene involved in the DNA-repair mechanism, which a healthy cell would use to deal with mutations. BRCA1 and BRCA2, both often implicated in breast cancer, are DNA-repair genes.

DNA sequencing means it is becoming possible to track mutations, one tumour at a time. This helps in understanding how cancers in different tissues work and it also holds out the hope of treatments tailored even more closely to an individual’s needs. […]

[…] On December 5th, for example, GlaxoSmithKline announced partnerships with six academic research centres to develop new therapeutic drug combinations. Axel Hoos, the company’s vice-president for oncology, says the firm may soon test a targeted drug in combination with an immunotherapy from another company.

This approach could lead to prescribable treatments arriving faster if promising combinations are tested before either component had been approved for use by itself—a process recently made easier by a change in the rules by the Food and Drug Administration, America’s drug regulator.

Who is able to use these wonder drugs, if and when they become available, will depend on how deep are the pockets of those who are paying for them. In America a typical course of four doses of ipilimumab costs more than $100,000. Like all wars, the one against cancer is going to cost a lot of money, one way or another.


WNBTv - Good TV!

Something to say...?